source: ps/trunk/source/maths/Brush.cpp@ 25269

Last change on this file since 25269 was 25269, checked in by Vladislav Belov, 3 years ago

Removes low-level GL calls from graphics and geometrics primitives and adds DebugRenderer.

Tested By: Freagarach

Differential Revision: https://code.wildfiregames.com/D3857

  • Property svn:eol-style set to native
File size: 13.9 KB
Line 
1/* Copyright (C) 2021 Wildfire Games.
2 * This file is part of 0 A.D.
3 *
4 * 0 A.D. is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * 0 A.D. is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with 0 A.D. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#include "precompiled.h"
19
20#include "Brush.h"
21
22#include "maths/BoundingBoxAligned.h"
23#include "maths/Frustum.h"
24
25CBrush::CBrush() = default;
26
27///////////////////////////////////////////////////////////////////////////////
28// Convert the given bounds into a brush
29CBrush::CBrush(const CBoundingBoxAligned& bounds)
30{
31 m_Vertices.resize(8);
32
33 for(size_t i = 0; i < 8; ++i)
34 {
35 m_Vertices[i][0] = bounds[(i & 1) ? 1 : 0][0]; // X
36 m_Vertices[i][1] = bounds[(i & 2) ? 1 : 0][1]; // Y
37 m_Vertices[i][2] = bounds[(i & 4) ? 1 : 0][2]; // Z
38 }
39
40 // construct cube face indices, 5 vertex indices per face (start vertex included twice)
41
42 m_Faces.resize(30);
43
44 m_Faces[0] = 0; m_Faces[1] = 1; m_Faces[2] = 3; m_Faces[3] = 2; m_Faces[4] = 0; // Z = min
45 m_Faces[5] = 4; m_Faces[6] = 5; m_Faces[7] = 7; m_Faces[8] = 6; m_Faces[9] = 4; // Z = max
46
47 m_Faces[10] = 0; m_Faces[11] = 2; m_Faces[12] = 6; m_Faces[13] = 4; m_Faces[14] = 0; // X = min
48 m_Faces[15] = 1; m_Faces[16] = 3; m_Faces[17] = 7; m_Faces[18] = 5; m_Faces[19] = 1; // X = max
49
50 m_Faces[20] = 0; m_Faces[21] = 1; m_Faces[22] = 5; m_Faces[23] = 4; m_Faces[24] = 0; // Y = min
51 m_Faces[25] = 2; m_Faces[26] = 3; m_Faces[27] = 7; m_Faces[28] = 6; m_Faces[29] = 2; // Y = max
52}
53
54
55///////////////////////////////////////////////////////////////////////////////
56// Calculate bounds of this brush
57void CBrush::Bounds(CBoundingBoxAligned& result) const
58{
59 result.SetEmpty();
60
61 for(size_t i = 0; i < m_Vertices.size(); ++i)
62 result += m_Vertices[i];
63}
64
65
66///////////////////////////////////////////////////////////////////////////////
67// Cut the brush according to a given plane
68
69/// Holds information about what happens to a single vertex in a brush during a slicing operation.
70struct SliceOpVertexInfo
71{
72 float planeDist; ///< Signed distance from this vertex to the slicing plane.
73 size_t resIdx; ///< Index of this vertex in the resulting brush (or NO_VERTEX if cut away)
74};
75
76/// Holds information about a newly introduced vertex on an edge in a brush as the result of a slicing operation.
77struct SliceOpNewVertexInfo
78{
79 /// Indices of adjacent edge vertices in original brush
80 size_t edgeIdx1, edgeIdx2;
81 /// Index of newly introduced vertex in resulting brush
82 size_t resIdx;
83
84 /**
85 * Index into SliceOpInfo.nvInfo; hold the indices of this new vertex's direct neighbours in the slicing plane face,
86 * with no consistent winding direction around the face for either field (e.g., the neighb1 of X can point back to
87 * X with either its neighb1 or neighb2).
88 */
89 size_t neighbIdx1, neighbIdx2;
90};
91
92/// Holds support information during a CBrush/CPlane slicing operation.
93struct SliceOpInfo
94{
95 CBrush* result;
96 const CBrush* original;
97
98 /**
99 * Holds information about what happens to each vertex in the original brush after the slice operation.
100 * Same size as m_Vertices of the brush getting sliced.
101 */
102 std::vector<SliceOpVertexInfo> ovInfo;
103
104 /// Holds information about newly inserted vertices during a slice operation.
105 std::vector<SliceOpNewVertexInfo> nvInfo;
106
107 /**
108 * Indices into nvInfo; during the execution of the slicing algorithm, holds the previously inserted new vertex on
109 * one of the edges of the face that's currently being evaluated for slice points, or NO_VERTEX if no such vertex
110 * exists.
111 */
112 size_t thisFaceNewVertexIdx;
113};
114
115struct CBrush::Helper
116{
117 /**
118 * Creates a new vertex between the given two vertices (indexed into the original brush).
119 * Returns the index of the new vertex in the resulting brush.
120 */
121 static size_t SliceNewVertex(SliceOpInfo& sliceInfo, size_t v1, size_t v2);
122};
123
124size_t CBrush::Helper::SliceNewVertex(SliceOpInfo& sliceOp, size_t edgeIdx1, size_t edgeIdx2)
125{
126 // check if a new vertex has already been inserted on this edge
127 size_t idx;
128 for(idx = 0; idx < sliceOp.nvInfo.size(); ++idx)
129 {
130 if ((sliceOp.nvInfo[idx].edgeIdx1 == edgeIdx1 && sliceOp.nvInfo[idx].edgeIdx2 == edgeIdx2) ||
131 (sliceOp.nvInfo[idx].edgeIdx1 == edgeIdx2 && sliceOp.nvInfo[idx].edgeIdx2 == edgeIdx1))
132 break;
133 }
134
135 if (idx >= sliceOp.nvInfo.size())
136 {
137 // no previously inserted new vertex found on this edge; insert a new one
138 SliceOpNewVertexInfo nvi;
139 CVector3D newPos;
140
141 // interpolate between the two vertices based on their distance from the plane
142 float inv = 1.0 / (sliceOp.ovInfo[edgeIdx1].planeDist - sliceOp.ovInfo[edgeIdx2].planeDist);
143 newPos = sliceOp.original->m_Vertices[edgeIdx2] * ( sliceOp.ovInfo[edgeIdx1].planeDist * inv) +
144 sliceOp.original->m_Vertices[edgeIdx1] * (-sliceOp.ovInfo[edgeIdx2].planeDist * inv);
145
146 nvi.edgeIdx1 = edgeIdx1;
147 nvi.edgeIdx2 = edgeIdx2;
148 nvi.resIdx = sliceOp.result->m_Vertices.size();
149 nvi.neighbIdx1 = NO_VERTEX;
150 nvi.neighbIdx2 = NO_VERTEX;
151
152 sliceOp.result->m_Vertices.push_back(newPos);
153 sliceOp.nvInfo.push_back(nvi);
154 }
155
156 // at this point, 'idx' is the index into nvInfo of the vertex inserted onto the edge
157
158 if (sliceOp.thisFaceNewVertexIdx != NO_VERTEX)
159 {
160 // a vertex has been previously inserted onto another edge of this face; link them together as neighbours
161 // (using whichever one of the neighbIdx1 or -2 links is still available)
162
163 if (sliceOp.nvInfo[sliceOp.thisFaceNewVertexIdx].neighbIdx1 == NO_VERTEX)
164 sliceOp.nvInfo[sliceOp.thisFaceNewVertexIdx].neighbIdx1 = idx;
165 else
166 sliceOp.nvInfo[sliceOp.thisFaceNewVertexIdx].neighbIdx2 = idx;
167
168 if (sliceOp.nvInfo[idx].neighbIdx1 == NO_VERTEX)
169 sliceOp.nvInfo[idx].neighbIdx1 = sliceOp.thisFaceNewVertexIdx;
170 else
171 sliceOp.nvInfo[idx].neighbIdx2 = sliceOp.thisFaceNewVertexIdx;
172
173 // a plane should slice a face only in two locations, so reset for the next face
174 sliceOp.thisFaceNewVertexIdx = NO_VERTEX;
175 }
176 else
177 {
178 // store the index of the inserted vertex on this edge, so that we can retrieve it when the plane slices
179 // this face again in another edge
180 sliceOp.thisFaceNewVertexIdx = idx;
181 }
182
183 return sliceOp.nvInfo[idx].resIdx;
184}
185
186void CBrush::Slice(const CPlane& plane, CBrush& result) const
187{
188 ENSURE(&result != this);
189
190 SliceOpInfo sliceOp;
191
192 sliceOp.original = this;
193 sliceOp.result = &result;
194 sliceOp.thisFaceNewVertexIdx = NO_VERTEX;
195 sliceOp.ovInfo.resize(m_Vertices.size());
196 sliceOp.nvInfo.reserve(m_Vertices.size() / 2);
197
198 result.m_Vertices.resize(0); // clear any left-overs
199 result.m_Faces.resize(0);
200 result.m_Vertices.reserve(m_Vertices.size() + 2);
201 result.m_Faces.reserve(m_Faces.size() + 5);
202
203 // Copy vertices that weren't sliced away by the plane to the resulting brush.
204 for(size_t i = 0; i < m_Vertices.size(); ++i)
205 {
206 const CVector3D& vtx = m_Vertices[i]; // current vertex
207 SliceOpVertexInfo& vtxInfo = sliceOp.ovInfo[i]; // slicing operation info about current vertex
208
209 vtxInfo.planeDist = plane.DistanceToPlane(vtx);
210 if (vtxInfo.planeDist >= 0.0)
211 {
212 // positive side of the plane; not sliced away
213 vtxInfo.resIdx = result.m_Vertices.size();
214 result.m_Vertices.push_back(vtx);
215 }
216 else
217 {
218 // other side of the plane; sliced away
219 vtxInfo.resIdx = NO_VERTEX;
220 }
221 }
222
223 // Transfer faces. (Recall how faces are specified; see CBrush::m_Faces). The idea is to examine each face separately,
224 // and see where its edges cross the slicing plane (meaning that exactly one of the vertices of that edge was cut away).
225 // On those edges, new vertices are introduced where the edge intersects the plane, and the resulting brush's m_Faces
226 // array is updated to refer to the newly inserted vertices instead of the original one that got cut away.
227
228 size_t currentFaceStartIdx = NO_VERTEX; // index of the first vertex of the current face in the original brush
229 size_t resultFaceStartIdx = NO_VERTEX; // index of the first vertex of the current face in the resulting brush
230
231 for(size_t i = 0; i < m_Faces.size(); ++i)
232 {
233 if (currentFaceStartIdx == NO_VERTEX)
234 {
235 // starting a new face
236 ENSURE(sliceOp.thisFaceNewVertexIdx == NO_VERTEX);
237
238 currentFaceStartIdx = m_Faces[i];
239 resultFaceStartIdx = result.m_Faces.size();
240 continue;
241 }
242
243 size_t prevIdx = m_Faces[i-1]; // index of previous vertex in this face list
244 size_t curIdx = m_Faces[i]; // index of current vertex in this face list
245
246 if (sliceOp.ovInfo[prevIdx].resIdx == NO_VERTEX)
247 {
248 // previous face vertex got sliced away by the plane; see if the edge (prev,current) crosses the slicing plane
249 if (sliceOp.ovInfo[curIdx].resIdx != NO_VERTEX)
250 {
251 // re-entering the front side of the plane; insert vertex on intersection of plane and (prev,current) edge
252 result.m_Faces.push_back(Helper::SliceNewVertex(sliceOp, prevIdx, curIdx));
253 result.m_Faces.push_back(sliceOp.ovInfo[curIdx].resIdx);
254 }
255 }
256 else
257 {
258 // previous face vertex didn't get sliced away; see if the edge (prev,current) crosses the slicing plane
259 if (sliceOp.ovInfo[curIdx].resIdx != NO_VERTEX)
260 {
261 // perfectly normal edge; doesn't cross the plane
262 result.m_Faces.push_back(sliceOp.ovInfo[curIdx].resIdx);
263 }
264 else
265 {
266 // leaving the front side of the plane; insert vertex on intersection of plane and edge (prev, current)
267 result.m_Faces.push_back(Helper::SliceNewVertex(sliceOp, prevIdx, curIdx));
268 }
269 }
270
271 // if we're back at the first vertex of the current face, then we've completed the face
272 if (curIdx == currentFaceStartIdx)
273 {
274 // close the index loop
275 if (result.m_Faces.size() > resultFaceStartIdx)
276 result.m_Faces.push_back(result.m_Faces[resultFaceStartIdx]);
277
278 currentFaceStartIdx = NO_VERTEX; // start a new face
279 }
280 }
281
282 ENSURE(currentFaceStartIdx == NO_VERTEX);
283
284 // Create the face that lies in the slicing plane. Remember, all the intersections of the slicing plane with face
285 // edges of the brush have been stored in sliceOp.nvInfo by the SliceNewVertex function, and refer to their direct
286 // neighbours in the slicing plane face using the neighbIdx1 and neighbIdx2 fields (in no consistent winding order).
287
288 if (sliceOp.nvInfo.size())
289 {
290 // push the starting vertex
291 result.m_Faces.push_back(sliceOp.nvInfo[0].resIdx);
292
293 // At this point, there is no consistent winding order in the neighbX fields, so at each vertex we need to figure
294 // out whether neighb1 or neighb2 points 'onwards' along the face, according to an initially chosen winding direction.
295 // (or, equivalently, which one points back to the one we were just at). At each vertex, we then set neighb1 to be the
296 // one to point onwards, deleting any pointers which we no longer need to complete the trace.
297
298 size_t idx;
299 size_t prev = 0;
300
301 idx = sliceOp.nvInfo[0].neighbIdx2; // pick arbitrary starting direction
302 sliceOp.nvInfo[0].neighbIdx2 = NO_VERTEX;
303
304 while(idx != 0)
305 {
306 ENSURE(idx < sliceOp.nvInfo.size());
307 if (idx >= sliceOp.nvInfo.size())
308 break;
309
310 if (sliceOp.nvInfo[idx].neighbIdx1 == prev)
311 {
312 // neighb1 is pointing the wrong way; we want to normalize it to point onwards in the direction
313 // we initially chose, so swap it with neighb2 and delete neighb2 (no longer needed)
314 sliceOp.nvInfo[idx].neighbIdx1 = sliceOp.nvInfo[idx].neighbIdx2;
315 sliceOp.nvInfo[idx].neighbIdx2 = NO_VERTEX;
316 }
317 else
318 {
319 // neighb1 isn't pointing to the previous vertex, so neighb2 must be (otherwise a pair of vertices failed to
320 // get paired properly during face/plane slicing).
321 ENSURE(sliceOp.nvInfo[idx].neighbIdx2 == prev);
322 sliceOp.nvInfo[idx].neighbIdx2 = NO_VERTEX;
323 }
324
325 result.m_Faces.push_back(sliceOp.nvInfo[idx].resIdx);
326
327 // move to next vertex; neighb1 has been normalized to point onward
328 prev = idx;
329 idx = sliceOp.nvInfo[idx].neighbIdx1;
330 sliceOp.nvInfo[prev].neighbIdx1 = NO_VERTEX; // no longer needed, we've moved on
331 }
332
333 // push starting vertex again to close the shape
334 result.m_Faces.push_back(sliceOp.nvInfo[0].resIdx);
335 }
336}
337
338
339
340///////////////////////////////////////////////////////////////////////////////
341// Intersect with frustum by repeated slicing
342void CBrush::Intersect(const CFrustum& frustum, CBrush& result) const
343{
344 ENSURE(&result != this);
345
346 if (!frustum.GetNumPlanes())
347 {
348 result = *this;
349 return;
350 }
351
352 CBrush buf;
353 const CBrush* prev = this;
354 CBrush* next;
355
356 // Repeatedly slice this brush with each plane of the frustum, alternating between 'result' and 'buf' to
357 // save intermediate results. Set up the starting brush so that the final version always ends up in 'result'.
358
359 if (frustum.GetNumPlanes() & 1)
360 next = &result;
361 else
362 next = &buf;
363
364 for(size_t i = 0; i < frustum.GetNumPlanes(); ++i)
365 {
366 prev->Slice(frustum[i], *next);
367 prev = next;
368 if (prev == &buf)
369 next = &result;
370 else
371 next = &buf;
372 }
373
374 ENSURE(prev == &result);
375}
376
377const std::vector<CVector3D>& CBrush::GetVertices() const
378{
379 return m_Vertices;
380}
381
382void CBrush::GetFaces(std::vector<std::vector<size_t>>& out) const
383{
384 // split the back-to-back faces into separate face vectors, so that they're in a
385 // user-friendlier format than the back-to-back vertex index array
386 // i.e. split 'x--xy------yz----z' into 'x--x', 'y-------y', 'z---z'
387
388 size_t faceStartIdx = 0;
389 while (faceStartIdx < m_Faces.size())
390 {
391 // start new face
392 std::vector<size_t> singleFace;
393 singleFace.push_back(m_Faces[faceStartIdx]);
394
395 // step over all the values in the face until we hit the starting value again (which closes the face)
396 size_t j = faceStartIdx + 1;
397 while (j < m_Faces.size() && m_Faces[j] != m_Faces[faceStartIdx])
398 {
399 singleFace.push_back(m_Faces[j]);
400 j++;
401 }
402
403 // each face must be closed by the same value that started it
404 ENSURE(m_Faces[faceStartIdx] == m_Faces[j]);
405
406 singleFace.push_back(m_Faces[j]);
407 out.push_back(singleFace);
408
409 faceStartIdx = j + 1;
410 }
411}
Note: See TracBrowser for help on using the repository browser.