Eric Brachmann

Deutschland Kontaktinformationen
1971 Follower:innen 500+ Kontakte

Anmelden, um das Profil zu sehen

Aktivitäten

Anmelden, um alle Aktivitäten zu sehen

Veröffentlichungen

  • BOP: Benchmark for 6D Object Pose Estimation

    ECCV 2018

    Andere Autor:innen
  • Learning Less is More - 6D Camera Localization via 3D Surface Regression

    CVPR

    Popular research areas like autonomous driving and augmented reality have renewed the interest in image-based camera localization. In this work, we address the task of predicting the 6D camera pose from a single RGB image in a given 3D environment. With the advent of neural networks, previous works have either learned the entire camera localization process, or multiple components of a camera localization pipeline. Our key contribution is to demonstrate and explain that learning a single…

    Popular research areas like autonomous driving and augmented reality have renewed the interest in image-based camera localization. In this work, we address the task of predicting the 6D camera pose from a single RGB image in a given 3D environment. With the advent of neural networks, previous works have either learned the entire camera localization process, or multiple components of a camera localization pipeline. Our key contribution is to demonstrate and explain that learning a single component of this pipeline is sufficient. This component is a fully convolutional neural network for densely regressing so-called scene coordinates, defining the correspondence between the input image and the 3D scene space. The neural network is prepended to a new end-to-end trainable pipeline. Our system is efficient, highly accurate, robust in training, and exhibits outstanding generalization capabilities. It exceeds state-of-the-art consistently on indoor and outdoor datasets. Interestingly, our approach surpasses existing techniques even without utilizing a 3D model of the scene during training, since the network is able to discover 3D scene geometry automatically, solely from single-view constraints.

    Veröffentlichung anzeigen
  • Learning to Predict Dense Correspondences for 6D Pose Estimation

    Saxon State and University Library Dresden (SLUB)

    Object pose estimation is an important problem in computer vision with applications in robotics, augmented reality and many other areas. An established strategy for object pose estimation consists of, firstly, finding correspondences between the image and the object’s reference frame, and, secondly, estimating the pose from outlier-free correspondences using Random Sample Consensus (RANSAC). The first step, namely finding correspondences, is difficult because object appearance varies depending…

    Object pose estimation is an important problem in computer vision with applications in robotics, augmented reality and many other areas. An established strategy for object pose estimation consists of, firstly, finding correspondences between the image and the object’s reference frame, and, secondly, estimating the pose from outlier-free correspondences using Random Sample Consensus (RANSAC). The first step, namely finding correspondences, is difficult because object appearance varies depending on perspective, lighting and many other factors. Traditionally, correspondences have been established using handcrafted methods like sparse feature pipelines.

    In this thesis, we introduce a dense correspondence representation for objects, called object coordinates, which can be learned. By learning object coordinates, our pose estimation pipeline adapts to various aspects of the task at hand. It works well for diverse object types, from small objects to entire rooms, varying object attributes, like textured or texture-less objects, and different input modalities, like RGB-D or RGB images. The concept of object coordinates allows us to easily model and exploit uncertainty as part of the pipeline such that even repeating structures or areas with little texture can contribute to a good solution. Although we can train object coordinate predictors independent of the full pipeline and achieve good results, training the pipeline in an end-to-end fashion is desirable. It enables the object coordinate predictor to adapt its output to the specificities of following steps in the pose estimation pipeline. Unfortunately, the RANSAC component of the pipeline is non-differentiable which prohibits end-to-end training. Adopting techniques from reinforcement learning, we introduce Differentiable Sample Consensus (DSAC), a formulation of RANSAC which allows us to train the pose estimation pipeline in an end-to-end fashion by minimizing the expectation of the final pose error.

    Veröffentlichung anzeigen
  • DSAC - Differentiable RANSAC for Camera Localization

    CVPR

    RANSAC is an important algorithm in robust optimization and a central building block for many computer vision applications. In recent years, traditionally hand-crafted pipelines have been replaced by deep learning pipelines, which can be trained in an end-to-end fashion. However, RANSAC has so far not been used as part of such deep learning pipelines, because its hypothesis selection procedure is non-differentiable. In this work, we present two different ways to overcome this limitation. The…

    RANSAC is an important algorithm in robust optimization and a central building block for many computer vision applications. In recent years, traditionally hand-crafted pipelines have been replaced by deep learning pipelines, which can be trained in an end-to-end fashion. However, RANSAC has so far not been used as part of such deep learning pipelines, because its hypothesis selection procedure is non-differentiable. In this work, we present two different ways to overcome this limitation. The most promising approach is inspired by reinforcement learning, namely to replace the deterministic hypothesis selection by a probabilistic selection for which we can derive the expected loss w.r.t. to all learnable parameters. We call this approach DSAC, the differentiable counterpart of RANSAC. We apply DSAC to the problem of camera localization, where deep learning has so far failed to improve on traditional approaches. We demonstrate that by directly minimizing the expected loss of the output camera poses, robustly estimated by RANSAC, we achieve an increase in accuracy. In the future, any deep learning pipeline can use DSAC as a robust optimization component.

    Andere Autor:innen
    Veröffentlichung anzeigen
  • Global Hypothesis Generation for 6D Object Pose Estimation

    CVPR

    This paper addresses the task of estimating the 6D pose of a known 3D object from a single RGB-D image. Most modern approaches solve this task in three steps: i) Compute local features; ii) Generate a pool of pose-hypotheses; iii) Select and refine a pose from the pool. This work focuses on the second step. While all existing approaches generate the hypotheses pool via local reasoning, e.g. RANSAC or Hough-voting, we are the first to show that global reasoning is beneficial at this stage. In…

    This paper addresses the task of estimating the 6D pose of a known 3D object from a single RGB-D image. Most modern approaches solve this task in three steps: i) Compute local features; ii) Generate a pool of pose-hypotheses; iii) Select and refine a pose from the pool. This work focuses on the second step. While all existing approaches generate the hypotheses pool via local reasoning, e.g. RANSAC or Hough-voting, we are the first to show that global reasoning is beneficial at this stage. In particular, we formulate a novel fully-connected Conditional Random Field (CRF) that outputs a very small number of pose-hypotheses. Despite the potential functions of the CRF being non-Gaussian, we give a new and efficient two-step optimization procedure, with some guarantees for optimality. We utilize our global hypotheses generation procedure to produce results that exceed state-of-the-art for the challenging "Occluded Object Dataset".

    Andere Autor:innen
    Veröffentlichung anzeigen
  • PoseAgent: Budget-Constrained 6D Object Pose Estimation via Reinforcement Learning

    CVPR

    State-of-the-art computer vision algorithms often achieve efficiency by making discrete choices about which hypotheses to explore next. This allows allocation of computational resources to promising candidates, however, such decisions are non-differentiable. As a result, these algorithms are hard to train in an end-to-end fashion. In this work we propose to learn an efficient algorithm for the task of 6D object pose estimation. Our system optimizes the parameters of an existing state-of-the art…

    State-of-the-art computer vision algorithms often achieve efficiency by making discrete choices about which hypotheses to explore next. This allows allocation of computational resources to promising candidates, however, such decisions are non-differentiable. As a result, these algorithms are hard to train in an end-to-end fashion. In this work we propose to learn an efficient algorithm for the task of 6D object pose estimation. Our system optimizes the parameters of an existing state-of-the art pose estimation system using reinforcement learning, where the pose estimation system now becomes the stochastic policy, parametrized by a CNN. Additionally, we present an efficient training algorithm that dramatically reduces computation time. We show empirically that our learned pose estimation procedure makes better use of limited resources and improves upon the state-of-the-art on a challenging dataset. Our approach enables differentiable end-to-end training of complex algorithmic pipelines and learns to make optimal use of a given computational budget.

    Andere Autor:innen
    • Alexander Krull
    • Sebastian Nowozin
    • Frank Michel
    • Jamie Shotton
    • Carsten Rother
    Veröffentlichung anzeigen
  • Random Forests versus Neural Networks - What's Best for Camera Relocalization?

    ICRA

    This work addresses the task of camera localization in a known 3D scene given a single input RGB image. State-of-the-art approaches accomplish this in two steps: firstly, regressing for every pixel in the image its 3D scene coordinate and subsequently, using these coordinates to estimate the final 6D camera pose via RANSAC. To solve the first step, Random Forests (RFs) are typically used. On the other hand, Neural Networks (NNs) reign in many dense regression tasks, but are not test-time…

    This work addresses the task of camera localization in a known 3D scene given a single input RGB image. State-of-the-art approaches accomplish this in two steps: firstly, regressing for every pixel in the image its 3D scene coordinate and subsequently, using these coordinates to estimate the final 6D camera pose via RANSAC. To solve the first step, Random Forests (RFs) are typically used. On the other hand, Neural Networks (NNs) reign in many dense regression tasks, but are not test-time efficient. We ask the question: which of the two is best for camera localization? To address this, we make two method contributions: (1) a test-time efficient NN architecture which we term a ForestNet that is derived and initialized from a RF, and (2) a new fully-differentiable robust averaging technique for regression ensembles which can be trained end-to-end with a NN. Our experimental findings show that for scene coordinate regression, traditional NN architectures are superior to test-time efficient RFs and ForestNets, however, this does not translate to final 6D camera pose accuracy where RFs and ForestNets perform slightly better. To summarize, our best method, a ForestNet with a robust average, which has an equivalent fast and lightweight RF, improves over the state-of-the-art for camera localization on the 7-Scenes dataset. While this work focuses on scene coordinate regression for camera localization, our innovations may also be applied to other continuous regression tasks.

    Andere Autor:innen
    • Daniela Massiceti
    • Alexander Krull
    • Carsten Rother
    • Philip H.S. Torr
    Veröffentlichung anzeigen
  • Uncertainty-Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image

    CVPR

    In recent years, the task of estimating the 6D pose of object instances and complete scenes, i.e. camera localization, from a single input image has received considerable attention. Consumer RGB-D cameras have made this feasible, even for difficult, texture-less objects and scenes. In this work, we show that a single RGB image is sufficient to achieve visually convincing results. Our key concept is to model and exploit the uncertainty of the system at all stages of the processing pipeline. The…

    In recent years, the task of estimating the 6D pose of object instances and complete scenes, i.e. camera localization, from a single input image has received considerable attention. Consumer RGB-D cameras have made this feasible, even for difficult, texture-less objects and scenes. In this work, we show that a single RGB image is sufficient to achieve visually convincing results. Our key concept is to model and exploit the uncertainty of the system at all stages of the processing pipeline. The uncertainty comes in the form of continuous distributions over 3D object coordinates and discrete distributions over object labels. We give three technical contributions. Firstly, we develop a regularized, auto-context regression framework which iteratively reduces uncertainty in object coordinate and object label predictions. Secondly, we introduce an efficient way to marginalize object coordinate distributions over depth.
    This is necessary to deal with missing depth information. Thirdly, we utilize the distributions over object labels to detect multiple objects simultaneously with a fixed budget of RANSAC hypotheses. We tested our system for object pose estimation and camera localization on commonly used data sets. We see a major improvement over competing systems.

    Andere Autor:innen
    Veröffentlichung anzeigen
  • Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images

    ICCV

    Analysis-by-synthesis has been a successful approach for many tasks in computer vision, such as 6D pose estimation of an object in an RGB-D image which is the topic of this work. The idea is to compare the observation with the output of a forward process, such as a rendered image of the object of interest in a particular pose. Due to occlusion or complicated sensor noise, it can be difficult to perform this comparison in a meaningful way. We propose an approach that “learns to compare”, while…

    Analysis-by-synthesis has been a successful approach for many tasks in computer vision, such as 6D pose estimation of an object in an RGB-D image which is the topic of this work. The idea is to compare the observation with the output of a forward process, such as a rendered image of the object of interest in a particular pose. Due to occlusion or complicated sensor noise, it can be difficult to perform this comparison in a meaningful way. We propose an approach that “learns to compare”, while taking these difficulties into account. This is done by describing the posterior density of a particular object pose with a convolutional neural network (CNN) that compares observed and rendered images. The network is trained with the maximum likelihood paradigm. We observe empirically that the CNN does not specialize to the geometry or appearance of specific objects. It can be used with objects of vastly different shapes and appearances, and in different backgrounds. Compared to state-of-the-art, we demonstrate a significant improvement on two different datasets which include a total of eleven objects, cluttered background, and heavy occlusion.

    Andere Autor:innen
    Veröffentlichung anzeigen
  • Pose Estimation of Kinematic Chain Instances via Object Coordinate Regression

    BMVC

    In this paper, we address the problem of one shot pose estimation of articulated objects from an RGB-D image. In particular, we consider object instances with the topology of a kinematic chain, i.e. assemblies of rigid parts connected by prismatic or revolute joints. This object type occurs often in daily live, for instance in the form of furniture or electronic devices. Instead of treating each object part separately we are using the relationship between parts of the kinematic chain and…

    In this paper, we address the problem of one shot pose estimation of articulated objects from an RGB-D image. In particular, we consider object instances with the topology of a kinematic chain, i.e. assemblies of rigid parts connected by prismatic or revolute joints. This object type occurs often in daily live, for instance in the form of furniture or electronic devices. Instead of treating each object part separately we are using the relationship between parts of the kinematic chain and propose a new minimal pose sampling approach. This enables us to create a pose hypothesis for a kinematic chain consisting
    of K parts by sampling K 3D-3D point correspondences. To asses the quality of our method, we gathered a large dataset containing four objects and 7000+ annotated RGB-D frames1 . On this dataset we achieve considerably better results than a modified state-of-the-art pose estimation system for rigid objects.

    Andere Autor:innen
    Veröffentlichung anzeigen
  • 6-DOF Model Based Tracking via Object Coordinate Regression

    ACCV

    This work investigates the problem of 6-Degrees-Of-Freedom (6-DOF) object tracking from RGB-D images, where the object is rigid and a 3D model of the object is known. As in many previous works, we utilize a Particle Filter (PF) framework. In order to have a fast tracker, the key aspect is to design a clever proposal distribution which works reliably even with a small number of particles. To achieve this we build on a recently developed state-of-the-art system for single image 6D pose estimation…

    This work investigates the problem of 6-Degrees-Of-Freedom (6-DOF) object tracking from RGB-D images, where the object is rigid and a 3D model of the object is known. As in many previous works, we utilize a Particle Filter (PF) framework. In order to have a fast tracker, the key aspect is to design a clever proposal distribution which works reliably even with a small number of particles. To achieve this we build on a recently developed state-of-the-art system for single image 6D pose estimation of known 3D objects, using the concept of so-called 3D object coordinates. The idea is to train a random forest that regresses
    the 3D object coordinates from the RGB-D image. Our key technical contribution is a two-way procedure to integrate the random forest predictions in the proposal distribution generation. This has many practical advantages, in particular better generalization ability with respect to occlusions, changes in lighting and fast-moving objects. We demonstrate experimentally that we exceed state-of-the-art on a given, public dataset. To raise the bar in terms of fast-moving objects and object occlusions, we also create a new dataset, which will be made publicly available.

    Andere Autor:innen
    Veröffentlichung anzeigen
  • Learning 6D Object Pose Estimation using 3D Object Coordinates

    ECCV

    This work addresses the problem of estimating the 6D Pose of specific objects from a single RGB-D image. We present a flexible approach that can deal with generic objects, both textured and texture-less. The key new concept is a learned, intermediate representation in form of a dense 3D object coordinate labelling paired with a dense class labelling. We are able to show that for a common dataset with texture-less objects, where template-based techniques are suitable and state of the art, our…

    This work addresses the problem of estimating the 6D Pose of specific objects from a single RGB-D image. We present a flexible approach that can deal with generic objects, both textured and texture-less. The key new concept is a learned, intermediate representation in form of a dense 3D object coordinate labelling paired with a dense class labelling. We are able to show that for a common dataset with texture-less objects, where template-based techniques are suitable and state of the art, our approach is slightly superior in terms of accuracy. We also demonstrate the benefits of our approach, compared to template-based techniques, in terms of robustness with respect to varying lighting conditions. Towards this end, we contribute a new ground truth dataset with 10k images of 20 objects captured each under three different lighting conditions. We demonstrate that our approach scales well with the number of objects and has capabilities to run fast.

    Andere Autor:innen
    Veröffentlichung anzeigen
  • Feature propagation on image webs for enhanced image retrieval

    ICMR

    The bag-of-features model is often deployed in content-based image retrieval to measure image similarity. In cases where the visual appearance of semantically similar images differs largely, feature histograms mismatch and the model fails. We increase the robustness of feature histograms by automatically augmenting them with features of related images. We establish image relations by image web construction and adapt a label propagation scheme from the domain of semi-supervised learning for…

    The bag-of-features model is often deployed in content-based image retrieval to measure image similarity. In cases where the visual appearance of semantically similar images differs largely, feature histograms mismatch and the model fails. We increase the robustness of feature histograms by automatically augmenting them with features of related images. We establish image relations by image web construction and adapt a label propagation scheme from the domain of semi-supervised learning for feature augmentation. While the benefit of feature augmentation has been shown before, our approach refrains from the use of semantic labels. Instead we show how to increase the performance of the bag-of-features model substantially on a completely unlabeled image corpus.

    Andere Autor:innen
    • Stefan Gumhold
    Veröffentlichung anzeigen
  • Simplified Authentication and Authorization for RESTful Services in Trusted Environments

    ESOCC

    In some trusted environments, such as an organization's intranet, local web services may be assumed to be trustworthy. This property can be exploited to simplify authentication and authorization protocols between resource providers and consumers, lowering the threshold for developing services and clients. Existing security solutions for RESTful services, in contrast, support untrusted services, a complexity-increasing capability that is not needed on an intranet with only trusted…

    In some trusted environments, such as an organization's intranet, local web services may be assumed to be trustworthy. This property can be exploited to simplify authentication and authorization protocols between resource providers and consumers, lowering the threshold for developing services and clients. Existing security solutions for RESTful services, in contrast, support untrusted services, a complexity-increasing capability that is not needed on an intranet with only trusted services.

    We propose a central security service with a lean API that handles both authentication and authorization for trusted RESTful services. A user trades credentials for a token that facilitates access to services. The services may query the security service for token authenticity and roles granted to a user. The system provides fine-grained access control at the level of resources, following the role-based access control (RBAC) model. Resources are identified by their URLs, making the authorization system generic. The mapping of roles to users resides with the central security service and depends on the resource to be accessed. The mapping of permissions to roles is implemented individually by the services. We rely on secure channels and the trusted intermediaries characteristic for intranets to simplify the protocols involved and to make the security features easy to use, cutting the number of required API calls in half.

    Andere Autor:innen
    Veröffentlichung anzeigen

Auszeichnungen/Preise

  • ACCV Honorable Mention Demo Award

    ACCV

    for our paper: Learning Analysis-by- Synthesis for 6D Pose Estimation in RGB-D Images

  • Enno Heidebroek Award

    TU Dresden

    awarded to the best graduates of the engineering department of the TU Dresden

  • IBM Award

    IBM

    awarded to students with an exceptional intermediate diploma

  • Scholarship of the German National Academic Foundation

    German National Academic Foundation

    awarded to students with exceptional academic performance, extracurricular interests and social commitment

Weitere Aktivitäten von Eric Brachmann

Eric Brachmanns vollständiges Profil ansehen

  • Herausfinden, welche gemeinsamen Kontakte Sie haben
  • Sich vorstellen lassen
  • Eric Brachmann direkt kontaktieren
Mitglied werden. um das vollständige Profil zu sehen

Weitere ähnliche Profile

Entwickeln Sie mit diesen Kursen neue Kenntnisse und Fähigkeiten